

How to Choose a 3D Vision Technology

Chris Osterwood Chief Technology Officer, Carnegie Robotics osterwood@carnegierobotics.com

- Supplier of reliable robotic components and systems.
- We have particular focus on and capability in autonomous and semiautonomous mobile ground robots. This includes perception, autonomy, positioning, and safety — for size, weight, power, and cost constrained applications.

- Criteria & Definitions
- Overview of 3D Sensor Modalities : LIDAR, ToF Camera, Stereo
 - How do they work?
 - What are their general advantages and disadvantages?
 - Sample Data
- 3D Sensor Testing & Edge Cases
- Not covered: Laser Triangulation, Structured Light, & Computed Tomography

- Field of View (FOV): Defines angular area of perceivable field of sensor.
- Density:
 - Angular step size between sample points.
 - Can be different horizontally and vertically.
- **Resolution:** Generally *FOV x Density*.
- **Depth Accuracy:** Difference between measured range and actual range.
- **Depth Resolution:** Step size between possible measurement ranges (along measurement axis)
- Minimum and Maximum Range: Defines distances that are perceivable to the sensor. May vary by object material, brightness, reflectivity, etc.
- Rate: Specified in "frames" or "points" per second, depending on modality.

- Size, Weight, & Power
- Cost
- Sealing: Dust proof, Water splash, Water streams, Immersion
- Shock & Vibration Rating
- Communication Interface: Ethernet, USB, Serial, CANBus, Firewire
- Synchronization: None, Hardware, Software (broadcast trigger or network time sync)
- Software Interface:
 - Published wire protocol?
 - Drivers. Platform? Language? License?
 - Example usage software?
- Other: Trigger, GPIO, Lighting, IMU, Temperature & Health Reporting

3D Sensor Technologies

- Building block is single-beam system above.
- 3D LIDARS can have:
 - 1 beam steered mechanically in 2 DOF
 - Multiple beams steered mechanically in 1 DOF
- Steering can be done with rotating mirror, galvanometer, or directly upon the emitter & detector.

Copyright © 2017 Carnegie Robotics

3D LIDAR

- Advantages:
 - Constant error model 1 sigma can be +/- 1cm.
 - Long range. 10m to 2km possible depending on laser power and pulse duration.
 - General wide horizontal FOV due to rotating mirror or rotating emitters and detectors.
 - Can have large vertical FOV. Dependent on laser and mechanism details.
- Downsides:
 - **Cost**. Trends are encouraging here, but low cost systems are not yet available.
 - Scan time no instantaneous capture of data. System has to compensate for platform (or mechanism) motion during scan.
 - Limited angular density & asymmetric density.
 - Moving parts & non-planar windows are difficult to seal.
 - Affected by obscurants in the environment.

ToF Cameras : How do they work?

- Like LIDAR, but every pixel is a pixel is a measurement point.
- Results in limited range or more transmission power.
- Accuracy increases with modulation frequency.
- Maximum range decreases with modulation frequency.
- Systems generally use multiple frequencies to allow for long range and non-ambiguous range.

30 Mhz wavelength is 10m, therefore $\rm z_{amb}$ is 5m

ToF Cameras

- Advantages:
 - Dense data regardless of scene texture.
 - Instantaneous horizontal & vertical FOV.
 - Linear error with respect to distance.
 - Narrower shadow behind positive obstacles.
 - Solid state no moving parts.
 - Fewer "camera" parameters.
- Downsides:
 - Low resolution.
 - Long integration time (to increase SNR and resolve range ambiguity) causes motion blur if platform or objects are moving.
 - Susceptible to multi-echo returns distorting data.
 - Affected by **obscurant** in the environment.
 - Limited FÓV generally both horizontal and vertical.
 - May not have an "image" output.

- Features matches are found in left and right cameras. Different in lateral position (disparity) is inversely proportional to distance.
- Matching process (correspondence problem) is critical to data accuracy and density.
- "Disparity search range" = number of horizontal pixels in right camera searched before moving onto the next left pixel. A larger search range allows seeing objects closer to the camera, but generally reduces 3D throughput.

Active & Passive Stereo

- Active Stereo: Correspondence problem aided through projection of arbitrary texture into the scene.
- Advantages:
 - Very high resolution and density.
 - Instantaneous horizontal & vertical FOV.
 - Flexible FOV options (from 130° to 10°)
 - Monochrome or color images are co-registered with 3D data.
 - Many "camera" parameters.
 - Passive solution is immune to obscurant in the environment.
 - Solid state no moving parts.
- Downsides:
 - Data density **dependent on scene texture** or pattern projection.
 - Non-linear error model with respect to distance.
 - Double shadow behind positive obstacles.
 - Computationally expensive process increases BOM cost.

Sensor Error Models

- 2MP 21cm 115 deg - -2MP 7cm 115 deg 2MP 21cm 95 deg -- 2MP 7cm 95 deg 2MP 21cm 80 deg - -2MP 7cm 80 deg 2MP 21cm 65 deg 2MP 7cm 65 deg - -2MP 21cm 45 deg
 - -- 2MP 7cm 45 deg

LIDAR

- Understanding the stereo error model is **key** to effective use.
- It is VERY different than every other sensor.
- Stereo accuracy here assumes matches with 1/2 pixel of accuracy. That is common in real world environments, but not guaranteed. Accuracy is affected by scene texture.

• LIDAR		LIDAR	ToF	Stereo
 High speed vehicles – well served by their long range and high accuracy at range. Vehicles with high turning rates – require wide horizontal FOV. TOF Camera Indoor environments. Short range object scanning & gesture recognition. Stereo Camera Outdoor applications with high levels of ambient obscurants. Multi-view applications (overlapping FOVs). Applications which require a non-emitting solution. 	HFOV			
	VFOV			
	Density			
	Range Accuracy			
	Min Range			
	Max Range			
	Data Rate			
	Obscurant			
	Cost			
	Sealing			
	Shock / Vibe			

Qualitative Comparison

3D LIDAR Sample Data

- 1: 8 seconds of persisted data.
- 2: 1 second of persisted data, high rotation rate.
- Notice:
 - Wide FOV.
 - Difficulty in seeing / identifying person.
 - Density differences horizontally & vertically.
 - Mixed pixel returns.

Copyright © 2017 Carnegie Robotics

ToF Camera Sample Data : Low Cost

- 1: Axis Colored Scene
- 2: Intensity Colored Scene
- Notice:
 - Low resolution / Low Rate.
 - Narrow FOV.
 - Invisible / bent cart handle.
 - "Flashlight effect".
 - Mid-air returns.
 - 1/2 of floor missing.

ToF Camera Sample Data : Industrial

- 1 & 2: Axis colored scene.
- Notice:
 - High resolution / High rate.
 - Distortion with near-field object.
 - Distortion to rear wall with foreground object.
 - Multi-path distortion in floor.
 - Mixed-pixel returns.

Stereo Sample Data

- 1: Overview of scene.
- 2: Close-up of chess board.
 - Post-matching cost threshold starts high (all data), is lowered (only high confidence data), and is raised again.
- Notice:
 - High density can see pieces, can see cart handle.
 - High Rate & Wider FOV.
 - Correlated scene color.
 - Data below ground caused by specular reflections.
 - False "spike" in rear wall caused by cart handle.

Active versus Passive Stereo

Carnegie Robotics.

- IR Pattern Projector turned on and off throughout scene.
- Areas of low-confidence have higher-confidence with projector on. This results in lower-noise and more accurate data.
- Scene has RGB colormap of monochrome intensity.

Stereo from Passive Thermal

Testing 3D Sensors

Carnegie Robotics.

White areas shifted 2.5cm closer to sensor

50% more noise

than Vendor A

0.00

0.20 0.15 0.10 0.05 0.00

Carnegie Robotics.

High IR content of Halogen increase noise additional 40%

300 lux : Fluorescent

5000 lux : Halogen

Higher range noise on dark objects

High IR content of Halogen increases noise by 2x to 5x

Stereo Camera: 7cm Baseline Range Accuracy

0.4 meter

Higher range noise on low-texture objects

3D LIDAR : Error Changes Over Time

Error to Color Mapping 0.00 cm : Blue 0.50 cm : Green 1.00 cm : Yellow 1.25 cm: Orange 1.50+ cm: Red

- Every laser (even same SKU) is different.
- Lasers change over time.
- Error car vary by emission angle & range.

- In some applications XYZ resolution matters as much as depth accuracy.
- How do you measure 3D resolution? Take cues from 2D camera testing.
 - Raised Relief 3-D Resolution Target
 - Derived from USAF 1951 resolution target
 - THE standard image quality test for 60 years

3D Resolution Testing Process

- Capture Image
- Identify and Isolate Target
- Outputs:
 - Colorized Depth Image
 - Colorized Depth Error Image
 - RMS error on features and between features for each grouping size

3D Resolution : Industrial ToF Camera

3D Resolution : Stereo

- There is no perfect sensor. They **all** have limitations and edge cases.
- It is critical to understand the performance & non-performance criteria that matter for your application.
 - Those weights must drive your sensor selection process.
 - You may have to sacrifice one or more lesser characteristics to meet the ones which really matter to you.
- Look for published test data. If none is available:
 - Ask the sensor manufacture,
 - Collect it yourself, or
 - Turn to those who have past experience in integration and downstream software.

• Carnegie Robotics:

Resources

- http://carnegierobotics.com/roscon-2017
- http://carnegierobotics.com/support
- Companies & Products:
 - Carnegie Robotics MultiSense
 - IFM O3D
 - SICK 3vistor-T
 - pmd pico
 - ZED Camera
 - Orbbec Persee
 - Structure Sensor

- SICK TiM / LMS LIDARs
- Velodyne 3D LIDARs
- Hokuyo 2D & 3D LIDAR
- Quanergy 3D LIDAR

